The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf
"Sympathectomy is a technique about which we have limited knowledge, applied to disorders about which we have little understanding." Associate Professor Robert Boas, Faculty of Pain Medicine of the Australasian College of Anaesthetists and the Royal College of Anaesthetists, The Journal of Pain, Vol 1, No 4 (Winter), 2000: pp 258-260
The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf
After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract
Spinal cord infarction occurring during thoraco-lumbar sympathectomy
J Neurol Neurosurg Psychiatry 1963;26:418-421 doi:10.1136/jnnp.26.5.418
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf
After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract
Spinal cord infarction occurring during thoraco-lumbar sympathectomy
J Neurol Neurosurg Psychiatry 1963;26:418-421 doi:10.1136/jnnp.26.5.418
Thursday, October 20, 2011
ETS considered psychiatric surgery - says Dr Nagy
"ETS can alter many bodily functions, including sweating , heart rate , heart stroke volume , blood pressure , thyroid , baroreflex , lung volume , pupil dilation, skin temperature, goose bumps and other aspects of the autonomic nervous system . It can diminish the body's physical reaction to exercise and/or strong emotion, and thus is considered psychiatric surgery. In rare cases sexual function or digestion may be modified as well. "
http://www.lvhyperhidrosis.com/treatment.html
http://www.lvhyperhidrosis.com/treatment.html
Wednesday, October 19, 2011
MD admits stellate ganglion block impacts on the insular cortex of the brain and alters emotions
Dr. Lipov says, "What really intrigued me about Dr, DeWall's study was he showed Tylenol exerted this emotional effect by acting on the insular cortex of the brain. That's exactly the same area that's affected by a Stellate Ganglion Block.[4]" The specialist is also Director of Chronic Pain Research at Northwest Community Hospital in Arlington Heights.
http://www.medicalnewstoday.com/releases/227298.php
http://www.medicalnewstoday.com/releases/227298.php
Sunday, October 16, 2011
Individual cardiovascular response to different levels of sympathetic blockade varies widely, depending on the degree of sympathetic tone before the block
The cardiovascular responses to epidural anaesthesia are almost entirely due to the fact that the local anaesthetic injected into the epidural space not only blocks somatic, sensory and motor fibres, but also produces preganglionic sympathetic denervation.
Postganglionic sympathetic nerves play an important role in controlling cardiac function and vascular tone. The most important of the cardiovascular effects are related to blockade of vasoconstrictor fibres (below T4) with resulting dilatation of resistance and capacitance vessels and/or cardiac sympathetic fibres with loss of chronotropic and inotropic drive to the myocardium (T1-5) (Figure 1).
The cardiac sympathetic outflow emerges from C5 to T5 levels, with the main supply to the ventricles from T1 to T43. A significant part of the chronotropic and inotropic control of the heart is mediated through the upper four thoracic spinal segments.
Denervation of preganglionic cardiac accelerator fibres leaving the cord at T1-T5 results in minimal vasodilatory consequences. Changes however in heart rate, left ventricular function and myocardial oxygen demand may occur due to high thoracic epidural blockade and are discussed below.
The major determinant of heart rate is the balance between sympathetic and parasympathetic systems with the latter predominating. A high thoracic epidural anaesthesia (TEA) covering the cardiac segments (T1-T4) produces small but significant reductions in heart rate4-8. During cardiac sympathetic denervation, parasympathetic cardiovascular responses, including those involved in baroreflexes, may dominate.
It was suggested that the sympathetic control of heart rate modified the dominating parasympathetic tone, rather than functioning as an active cardiac accelerator. In this study there was no compensation for changes in preload;
therefore cardiopulmonary baroreceptors affected by changes in central volume secondary to peripheral vasodilatation or vasoconstriction might have altered arterial baroreceptor heart rate reflex as well.
High TEA added to general anaesthesia significantly decreased the cardiac acceleration in response to decreasing blood pressure, suggesting that baroreflex-mediated heart rate response to a decrease in arterial blood pressure depends on the integrity of the sympathetic nervous system. However general anaesthesia, in addition to high levels of epidural anaesthesia, may have modified the balance between sympathetic and parasympathetic tone as well.
By applying power spectral analysis, i.e., frequency analysis of electrocardiographic R-R interval, the individual components of the autonomic nervous system can be discerned and can be used as a sensitive indicator of sympathovagal interaction.
Individual cardiovascular response to different levels of sympathetic blockade varies widely, depending on the degree of sympathetic tone before the block.
Anaesth Intensive Care 2000; 28: 620-635
B. T. VEERING*, M. J. COUSINS†
Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands and Department of Anaesthesia and
Pain Management, University of Sydney, Royal North Shore Hospital, Sydney, New South Wales
Postganglionic sympathetic nerves play an important role in controlling cardiac function and vascular tone. The most important of the cardiovascular effects are related to blockade of vasoconstrictor fibres (below T4) with resulting dilatation of resistance and capacitance vessels and/or cardiac sympathetic fibres with loss of chronotropic and inotropic drive to the myocardium (T1-5) (Figure 1).
The cardiac sympathetic outflow emerges from C5 to T5 levels, with the main supply to the ventricles from T1 to T43. A significant part of the chronotropic and inotropic control of the heart is mediated through the upper four thoracic spinal segments.
Denervation of preganglionic cardiac accelerator fibres leaving the cord at T1-T5 results in minimal vasodilatory consequences. Changes however in heart rate, left ventricular function and myocardial oxygen demand may occur due to high thoracic epidural blockade and are discussed below.
The major determinant of heart rate is the balance between sympathetic and parasympathetic systems with the latter predominating. A high thoracic epidural anaesthesia (TEA) covering the cardiac segments (T1-T4) produces small but significant reductions in heart rate4-8. During cardiac sympathetic denervation, parasympathetic cardiovascular responses, including those involved in baroreflexes, may dominate.
It was suggested that the sympathetic control of heart rate modified the dominating parasympathetic tone, rather than functioning as an active cardiac accelerator. In this study there was no compensation for changes in preload;
therefore cardiopulmonary baroreceptors affected by changes in central volume secondary to peripheral vasodilatation or vasoconstriction might have altered arterial baroreceptor heart rate reflex as well.
High TEA added to general anaesthesia significantly decreased the cardiac acceleration in response to decreasing blood pressure, suggesting that baroreflex-mediated heart rate response to a decrease in arterial blood pressure depends on the integrity of the sympathetic nervous system. However general anaesthesia, in addition to high levels of epidural anaesthesia, may have modified the balance between sympathetic and parasympathetic tone as well.
By applying power spectral analysis, i.e., frequency analysis of electrocardiographic R-R interval, the individual components of the autonomic nervous system can be discerned and can be used as a sensitive indicator of sympathovagal interaction.
Individual cardiovascular response to different levels of sympathetic blockade varies widely, depending on the degree of sympathetic tone before the block.
Anaesth Intensive Care 2000; 28: 620-635
B. T. VEERING*, M. J. COUSINS†
Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands and Department of Anaesthesia and
Pain Management, University of Sydney, Royal North Shore Hospital, Sydney, New South Wales
diabetic autonomic neuropathy has already sympathectomized the patient
Although not specific, the symptoms suffered by diabetics from sweating disturbances are fairly typical [5]. Initially there is heat intolerance accompanied by hyperhidrosis of the upper half of the body, particularly affecting the face, neck, axillae and hands. It is of interest that these patients rarely perspire excessively below the umbilicus. This diabetic syndrome has been attributed to a lesion of the sympathetic nerve fibres which control sweat secretion [11] and follow the course of the peripheral nerves [12]. This affects the efferent branch of the reflex arch and is identical to that occurring distal to a surgical sympathectomy [13].
There was no difference found between the histological changes in the nerves of the spontaneous anhidrotic patients
(Fig. 1) and those of the two previously sympathectomized patients.
A number of papers have been published which stressed [22-24] the high failure rate of sympathectomy operations in diabetics. We believe that the failure of the operation is due to the fact that diabetic autonomic neuropathy has already sympathectomized the patient. The results of the present study are compatible with this idea.
http://www.springerlink.com/content/v21h52461037653k
There was no difference found between the histological changes in the nerves of the spontaneous anhidrotic patients
(Fig. 1) and those of the two previously sympathectomized patients.
A number of papers have been published which stressed [22-24] the high failure rate of sympathectomy operations in diabetics. We believe that the failure of the operation is due to the fact that diabetic autonomic neuropathy has already sympathectomized the patient. The results of the present study are compatible with this idea.
http://www.springerlink.com/content/v21h52461037653k
Sympathectomy decreased CD4+ T-cells in lymph nodes
Alterations in lymphocyte activity does not always correlate with changes in the proportions of T- or B-lymphocyte subsets. Sympathetic denervation leads to loss of an important regulatory mechanism in immune system physiology. This is apparently site specific in that both lymph node and spleen T-cell proliferative responses are reduced.
Article by Dr. Brian A. Smith
http://home.earthlink.net/~doctorsmith/hivandchiro.htm
Article by Dr. Brian A. Smith
http://home.earthlink.net/~doctorsmith/hivandchiro.htm
Subscribe to:
Posts (Atom)